
12-778 Fall 2022: Assignment #1 Solutions
Mario Bergés

Here are the solutions to the assignment along with a grading rubric for each item.

What are sensors? (5%)

Pick an analog sensor from an online provider (one that you can easily purchase and would be
interested in understanding better for your final project) and answer the following questions:

Since both of these questions require input from the student on the selected sensor, the answers
here will depend entirely on that selection. A representative answer for the first question is
provided here, but it is to be treated as a reference guide only. The point of this exercise is
for us to better understand how much you have assimilated about the course content regarding
these issues. There is not a single right answer here.

a) What are the potential applications for this sensor? Describe two.

Answer

Current application: The ADXL330 is a high-sensitive triaxial accelerometer, and it has
been used in smart phones, game consoles, digital cameras, structure vibration tests and
GPS systems. For smartphone applications, it is usually used to measure the motion of
the phone and facilitate interaction with the phone (e.g., turn on the screen when the
phone is picked up). The ADXL330 could also help game consoles equipped with motion
controllers to transfer our actions with the gamepad to the system. In digital cameras,
ADXL330 can capture the small vibrations occuring when we take a picture and report
this to a anti-shock system to provide compensation. In GPS systems and software such
as Google Maps, it may keep track of our motion and orientation.

b) How does this sensor operate, physically? In other words, how does the sensor transform
energy in the physical phenomenon being measured into an electrical signal?

c) What is this sensor’s accuracy? What is its transfer function? What other static and/or
dynamic properties are worth discussing?

1

d) When considering the specific application that you have in mind, what are the advan-
tages and disadvantages of this specific sensor compared to other alternative sensing
technologies for the same physical stimulus?

e) How much does it cost, and where can you buy it?
f) What kind of interface circuit would be needed to connect it to your Raspberry Pi Pico

W? Please sketch the circuit.

Working with sensors and your RPi Pico W (10%)

The ADC in your RPi Pico W has 3 available channels for you to supply whatever inputs
you like, but there is a fourth channel that is directly connected to an on-board temperature
sensor. You can easily access this fourth channel in the same way that you do the other three,
but you won’t need to connect any analgo sensor to it as it is hard-wired to the temperature
sensor. Can you leverage the information on the Raspberry Pi Pico Python SDK (specifically,
page 14) to interface with this sensor and answer the following questions?

a) What is the sensor’s transfer function?

Answer

The sensor converts temperature (in Fahrenheit) into a voltage in a linear fashion (at
least in some range near ambient temperature), using the following linear model:

𝑉 = (27 − 𝑇)0.001721 + 0.706 = 0.752467 − 0.001721𝑇
Where 𝑉 is the output voltage, and 𝑇 is the temperature in Fahrenheit.
Conversely, and according to Page 14 of the Python SDK for the Pico, one can find
the temperature given the voltage measurement by inverting the transfer function: 𝑇 =
27 − 𝑉 −0.706

0.001721 .

b) Why do we need to take the ADC measurements and divide them by 65535? Why do
we multiply them by 3.3?

Answer

According to the documentation (including Page 14 of the Python SDK for the Pi Pico),
the Pico’s ADC measures a voltage value between 0 and 3.3V using a 12 bit resolution.
However, when calling the ADC through the read_u16() method of the ADC class in
Mycropython, this value is then cast into an integer in the range (0 to 65535) correspond-
ing to 2 bytes (16 bits). Thus, range from 0V to max input voltage gets converted into a
number between 0 and 65535 or, in other words, each increment of one integer obtained
through the read_u16() method corresponds to 1/65535 the maximum input range of

2

https://datasheets.raspberrypi.com/pico/raspberry-pi-pico-python-sdk.pdf

the ADC. Given all this, the values that one obtains from the ADC need to be divided
by 65535 and multiplied by the maximum input (3.3V) for them to be converted into
voltage values.

c) Create a Pico program that allows you to collect temperature data for a 10 minute
interval, at 1s resolution.

Answer

import machine
import time

fcsv = open('data.csv','w', encoding="utf-8")
fbin = open('data.bin','wb')

temp_sensor = machine.ADC(4)

temperature = lambda v: 27 - (v-0.706)/0.001721

for t in range(1,600):
voltage = temp_sensor.read_u16() * 3.3/65535
temp = temperature(voltage)
fscv.write(f'{temp}, ')
fbin.write(temp)
time.sleep(1)

d) Estimate the memory footprint of the data that you will collect using this program.

Answer

For the binary format, we would expect 2 bytes per measurement (since read_u16()
returns an unsigned short), and a total of 1200 bytes.
For the CSV formate, we expect a much larger number given that the unsigned short
is first converted into a string of characters for the decimal representation of the value
which has a maximum of 5 characters, and then a comma (and a space) are added to the
string. This represents at most 7 characters per measurement stored. Since we are using
UTF-8 encoding, this would mean (in the general case) 4 bytes per character, which turns
into 28 bytes per measurement stored (7 × 4), or a total of 600 × 28 = 16800 bytes for
the whole set of measurements (14 times more than in binary format).

3

e) Collect data for 10 minutes and save it (either locally, or remotely). What is the file size?
Compare it with the estimated memory footprint in the last question and comment on
this.

Answer

If we did things correctly, the answers from the previous question should match what we
find save for some additional considerations such as the size of the file on disk (which
depends on the filesystem).

Harmonic Oscillators (10%)

In class we discussed dynamic characteristics of sensors by looking into the response of single
degree of freedom systems to harmonic loading. Unfortunately, we did not have enough time
to solve the equations of motion for the damped forced oscillator case, or to play around with
the resulting solutions. Thus, for this task, and to make sure the concepts are more intuitive
to you, I ask that you play with a simulated harmonic oscillator, borrowed and later modified
from here.

The problem is defined as finding the solutions to the following differential equation:

̈𝑥 + 𝑐 ̇𝑥 + 𝑘𝑥 = 𝐹(𝑡)
𝑚

or, if we know that 𝜔0 = √ 𝑘
𝑚 , which is the angular frequency of the oscillator when undamped;

and 𝜁 = 𝑐
2

√
𝑚𝑘 is the so-called damping ratio, we can rewrite it as such:

̈𝑥 + 2𝜁𝜔0 ̇𝑥 + 𝜔0
2𝑥 = 𝐹(𝑡)

𝑚

We will start with the case where 𝐹(𝑡)
𝑚 = 𝐹𝑚𝑠𝑖𝑛(𝜔𝑑𝑡), i.e. the oscillator is driven by a sinusoidal

force of amplitude 𝐹𝑚 and frequency 𝜔𝑑.

%matplotlib notebook
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from scipy import integrate
import ipywidgets as ipw

4

https://scientific-python.readthedocs.io/en/latest/notebooks_rst/3_Ordinary_Differential_Equations/02_Examples/Harmonic_Oscillator.html

def ode(X, t, zeta, omega0):
"""
Free Harmonic Oscillator ODE
"""
x, dotx = X
ddotx = -2*zeta*omega0*dotx - omega0**2*x
return [dotx, ddotx]

def odeDrive(X, t, zeta, omega0, omegad_omega0):
"""
Driven Harmonic Oscillator ODE
"""
x, dotx = X
omegad = omegad_omega0 * omega0
ddotx = -2*zeta*omega0*dotx - omega0**2*x + F_m * np.sin(omegad * t)
return [dotx, ddotx]

def update(zeta = 0.05, omega0 = 2.*np.pi, omegad_omega0 = 1.): #def update(c=1,m=10,k=0.5,omegad=2.*np.pi):
"""
Update function.
"""
#zeta = c/(2.*np.sqrt(m*k))
#omega0 = np.sqrt(k/m)
#omegad_omega0 = omegad/omega0
X0 = np.zeros(2)
sol = integrate.odeint(odeDrive, X0, t, args = (zeta, omega0, omegad_omega0))
line0.set_ydata(sol[:, 0])
fig.canvas.draw()
fig.canvas.flush_events()

Nt = 1000
F_m = 1.
t = np.linspace(0., 10., Nt)
dummy = np.zeros_like(t)
fig = plt.figure()
line0, = plt.plot(t, dummy, label = "position")
plt.grid()
plt.ylim(-1., 1.)
plt.xlabel("Time, t")
plt.ylabel("Amplitude, a")
plt.legend()

5

ipw.interact(update, zeta = (0., .2, 0.01),
omega0 = (2.*np.pi*0.5, 2.*np.pi*5, 2.*np.pi*0.01),
omegad_omega0 = (0.1, 2., 0.05));

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

interactive(children=(FloatSlider(value=0.05, description='zeta', max=0.2, step=0.01), FloatSlider(value=6.283…

To start, take the code above and copy/paste it to a Jupyter Notebook so that you can play
around with the interactive interface that it provides. Currently, the interface is set up to
allow you to set three parameters, namely 𝜁, 𝜔0 and 𝜔𝑑

𝜔0
. That said, it is relatively easy to

change the interface so that you can directly alter 𝑐, 𝑚, 𝑘 and 𝜔𝑑. Your task is to leverage the
interactive interface and get familiarized with the response of the system as you change the
damping, stiffness, mass and frequency of the harmonic loading. Try answering these questions
for yourself:

a) What is the relationship between the amplitude and frequency of the harmonic loading,
and the amplitude and frequency of the system’s response?

Answer

This relationship is entirely described by the frequency response function (FRF). In gen-
eral, the higher the amplitude of the output is a scaled copy of the input and the scaling
is inversely related to the mass, frequency, spring constant and damping factor. This
relationship is complex and leads to different behaviors depending on the values of these
parameters (especially 𝜔𝑑 and 𝑐, but can be described as 𝑋(𝜔) = 1

√(𝑘−𝑚𝜔𝑑2)2+𝑐2𝜔𝑑2 𝐹𝑚.

b) What happens when you drive the system at the resonant frequency?

Answer

It depends on the damping ratio, but in the underdamped case there would be resonance.

Other questions you may want to ask yourself about this system:

c) In practice, one can assume that the natural frequency of a damped system can be taken
to be equal to the undamped natural frequency, because the damping ratio is less than
10%. Does this make sense given the simulation results you can observe? How large of
a damping ratio can you expect to have while still maintaining this assumption?

6

Answer

As shown in Chapter 2 of Paz, for an underdamped system (𝑐 < 𝑐𝑐𝑟), the damped
frequency 𝜔𝐷 is equivalent to 𝜔0√1 − 𝜁2.

d) If someone sets the damping ratio randomly, would you be able to estimate its value
simply from the simulated response of the system?

Answer

If the input signal were a step function, then yes. But discerning the difference between
the transient and steady-state response when the input is a periodic function becomes
hard.

Once you are done, please write a brief summary of your overall findings (2 or 3 paragraphs of
thoughts, not just about the last few questions) as your answer to this part of the assignment.

Circuit Analysis (25%)

Task a (10%)

If you think carefully about what we’ve learned about complex impedances and how they work
in AC circuits, you’ll quickly realize that almost any component in your system can be seen
as a filter. It may not be evident, but even the wire you are using to connect components
together, itself, can act as a filter. Let’s explore that a bit.

Virtually all cables have a very small, but detectable capacitance. This is because the insulation
material around each of the wires closing the circuit acts as a dielectric and can accumulate
charge when a voltage is present.

Figure 1 shows a diagram of how this works out in practice. If, for example, we had an ideal
microphone as the voltage source (𝑉𝑖𝑛) in this circuit, and wanted to measure the signal coming
out (𝑉𝑜𝑢𝑡), we would find that the values of 𝑍1 and 𝑍2, namely the resistance and capacitance
of the cable itself, would influence the signal we receive.

To study the effect of this filter, let’s analyze the ratio of the magnitudes for 𝑉𝑖𝑛 and 𝑉𝑜𝑢𝑡. In
other words, let’s study how the voltage we measure is related to the voltage being supplied
by the microphone, as described below:

𝑉𝑜𝑢𝑡
𝑉𝑖𝑛

7

Figure 1: Simple circuit generalizing the effect of cable resistance and capacitance.

Task a: If 𝑍1 = 𝑅 and 𝑍2 = 1
𝑗𝜔𝐶 , where 𝐶 is the capacitance of the cable, and 𝑅 is the

resistance, then what is the expression for 𝑉𝑜𝑢𝑡
𝑉𝑖𝑛

?

Answer

You may recognize the circuit as a voltage divider with two impedances, which means that:
𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛

𝑍2
𝑍1+𝑍2

. In this particular case, 𝐻(𝜔) = 𝑉𝑜𝑢𝑡
𝑉𝑖𝑛

= 1
1+𝑗𝜔𝑅𝐶 . The magnitude of this

complex quantity, which we also call the Frequency Response Function (FRF) or 𝐻(𝜔)
due to its dependence on 𝜔 once 𝑅 and 𝐶 are fixed, is as follows: |𝐻(𝜔)| = 1√

1+𝜔2𝑅2𝐶2 .
This is the FRF for a low-pass filter, and it is the essence of the answer to this queestion.
In other words, we expect this cable to act as a filter, attenuating high-frequency signals.
The cut-off frequency for this filter is defined as the value of 𝜔 at which the magnitude
drops by 3dB (i.e., |𝐻(𝜔) = 1√

2). You can calculate this by simple algebra:

|𝐻(𝜔𝑐)| = 1√
1 + 𝜔2𝑅2𝐶2 = 1√

2

𝜔𝑐 = 1
𝑅𝐶

Task b: The capacitance of the wire (as well as the resistance) increase with its length 𝑙. In

8

other words, 𝐶 ∝ 𝑙 and 𝑅 ∝ 𝑙. What will happen to the dynamic properties of the measured
signal from a microphone as we increase the length of the wire?

Answer

We know that the magnitude of any frequency component 𝜔 that is present in the input
signal 𝑉𝑖𝑛 is amplified/attenuated by |𝐻(𝜔)|. If we assume that 𝑅 and 𝐶 are variable,
and proportional to 𝑙 then generally speaking what we are saying is that:

|𝐻(𝜔, 𝑙)| = 1
√1 + 𝜔2(𝛼𝑅𝑙 + 𝛽𝑅)2(𝛼𝐶𝑙 + 𝛽𝑅)2

Where 𝛼𝑅 and 𝛼𝐶 are proportionality constants for 𝑅 and 𝐶 with respect to 𝑙 (i.e.,
their corresponding sensitivity to 𝑙), respectively; and 𝛽𝑅 and 𝛽𝐶 are intercept terms
for this proportionality (though we can assume them to be zero since when 𝑙 is zero we
have no resistance or capacitance. We can now investigate how |𝐻(𝜔, 𝑅, 𝐶, 𝑙)| changes
as a function of 𝑙. As you can assess from the equation, for any given 𝜔 its magnitude
will decrease as we increase 𝑙. Essentially, as 𝑙 increases, the cut-off frequency (1

𝛼𝑅𝛼𝐶𝑙2)
decreases.

Task b (5%)

For the circuit in Figure 2, find the steady-state voltage across 𝑅1, 𝑅2 and 𝐶, if 𝑉𝑠 = 10 V
DC, 𝑅1 = 1 kΩ, 𝑅2 = 1 kΩ and 𝐶 = 0.01𝜇F.

Answer

The circuit is available for simulation and inspection on CircuitLab here
The voltage drops are 𝑉 (𝑅1) = 0 volts, 𝑉 (𝑅2) = 10 volts and 𝑉 (𝐶) = 10 volts. You can
see that by moving your mouse over the specific elements on the CircuitLab model (after
running the DC Solver under the Simulate tab).

Task c (10%)

Solve Exercise 2.24 from Chapter 2 (Analyis of Circuits) from Instrumentation for Engineering
Measurements by Dally, Riley and McConnell.

Answer

Verifying Equation 2.45:

9

https://www.circuitlab.com/circuit/4699m6au8e5q/12-778_assignment_1_task5-2/

Figure 2: Simple DC circuit

10

𝑍𝑅 = 𝑅

𝑍𝐶 = −𝑗
𝜔𝐶

𝑣𝑜(𝑡) = 𝑍𝐶
𝑍𝐶 + 𝑍𝑅

𝑣𝑖𝑒𝑗𝜔𝑡

𝑣𝑜(𝑡) = 1
1 + 𝑗𝜔𝑅𝐶 𝑣𝑖𝑒𝑗𝜔𝑡

This is the same circuit we saw in Task a of the Circuit Analysis section of this assignment.
The output voltage is a complex periodic function and we can write it down in polar form.
We already computed the magnitude of the frequency response function (FRF) (i.e., |𝑣𝑜

𝑣𝑖
|)

but we need to also calculate the phase angle:

|𝑣𝑜(𝑡)| = 𝑣𝑖
√1 + (𝜔𝑅𝐶)2

𝜙 = 𝑡𝑎𝑛−1(𝜔𝑅𝐶)
A graph of |𝑣𝑜

𝑣𝑖
| as a function of 𝜔𝑅𝐶

11

%matplotlib notebook
import numpy as np
import matplotlib.pyplot as plt
import ipywidgets as ipw

magnitude = lambda wrc: 1 / np.sqrt(1+np.square(wrc))

phase = lambda wrc: np.arctan(wrc)

def update_plot(omega, R, C):
wrc_now = omega*R*C
testmag.set_data((wrc_now, magnitude(wrc_now)))
testphase.set_data((wrc_now, phase(wrc_now)))
fig.canvas.draw()
fig.canvas.flush_events()

wrc = np.arange(0,20,0.1)

omega = 1
R = 1
C = 5

plt.rcParams.update({
"text.usetex": True,
"font.family": "Helvetica"

})
fig, ax = plt.subplots(figsize=(10,5))
plt.subplot(2,1,1)
plt.plot(wrc,magnitude(wrc),'-b')
testmag, = plt.plot(omega*R*C, magnitude(omega*R*C), 'rx')
plt.grid()
plt.ylabel('$|{v_o}/{v_i}|$')
plt.subplot(2,1,2)
plt.plot(wrc,phase(wrc),'-b')
testphase, = plt.plot(omega*R*C, phase(omega*R*C), 'rx')
plt.grid()
plt.ylabel('ϕ')
plt.xlabel('$\omega R C$')
plt.savefig('_ex-circuits-6_solution.png')

ipw.interact(update_plot, omega = (0., 2., 0.1), R = (0., 5., 0.1), C = (0., 5., 0.1))

12

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

interactive(children=(FloatSlider(value=1.0, description='omega', max=2.0), FloatSlider(value=2.5, description…

<function __main__.update_plot(omega, R, C)>

What happens to the impedance 𝑍𝐶 as 𝜔 becomes very large?
As 𝜔 becomes very large, the impedance 𝑍𝐶 (more specifically, its magnitude |𝑍𝐶|) de-
creases significantly, tending to zero.

Impedance (20%)

In chapter 2 of Fraden, Figure Figure 3 shows up (Figure 2.15 in the book):

Task a: The concept of impedance is very important for circuit analysis. Please define, as
best as you can (i.e., using technical concepts and mathematical notation), what impedance
is.

Answer

Impedance is a concept used to extend the idea of resistance in DC circuits into AC
circuits. Because, unlike in the DC case, the impedance of an element is dependent
frequency of the voltage, the impedance is a complex number.

13

Figure 3: Sensor connections to an interface circuit. (a) shows a sensor with voltage output,
while (b) shows a sensor with current output.

14

Task b: Impedance matching is also an important concept, as described by Fraden in page
40 of Chapter 2. Can you explain why it is recommended that a sensor with voltage output
should have a much smaller impedance (𝑍𝑜𝑢𝑡) compared to the impedance (𝑍𝑖𝑛) of the interface
circuit? (see Figure 3 A). Why is it different for Figure 3 B?

Answer

As we saw in class, this concept of impedance matching is very related to another concept
called interstage loading (Chapter 6 of Figliola). There, we learned that if we want to
have maximum voltage between stages, we need to set the 𝑍𝑜𝑢𝑡 should be much smaller
than the input impedance 𝑍𝑖𝑛 because:

𝑉 − 𝑉𝑆 = 𝑉𝑆 (1
1 + 𝑍𝑜𝑢𝑡

𝑍𝑖𝑛

− 1)

And we would like to reduce that error (i.e., reduce 𝑉 − 𝑉𝑆).
For similar reasons, when the signal is driven by current, then we want the opposite.

Task c: Find a good video online explaining the concept of impedance matching (one whose
explanation you find intuitive and clear) and provide the URL to that video as the answer to
this question.

Answer

I’m very interested in seeing your solutions to this!

Task d: Compute the total impedance for the AC circuit shown in Figure Figure 4. Here,
𝑣𝑠 is an AC voltage source (i.e., it is a time-varying source of voltage, varying as follows:
𝑣𝑠 = 𝑣𝑖𝑒𝑗𝜔𝑡). The frequency of this AC source is 𝜔. In the same circuit, 𝑅, 𝐿 and 𝐶 represent
the resistance, inductance and capacitance values for those circuit elements, respectively.

Answer

𝑍𝐿 = 𝑗𝜔𝐿
𝑍𝑅 = 𝑅

𝑍𝐶 = 1
𝑗𝜔𝐶 = −𝑗

𝜔𝐶
Using complex number notation, the complex impedance would be:

𝑍𝑇 𝑜𝑡𝑎𝑙 = 𝑍𝐿 + 𝑍𝑅 + 𝑍𝐶 = 𝑅 + 𝑗 (𝜔𝐿 − 1
𝜔𝐶)

In polar coordinates, we would need the magnitude (i.e., |𝑍𝑇 𝑜𝑡𝑎𝑙|) and phase of 𝑍𝑇 𝑜𝑡𝑎𝑙:

15

Figure 4: An AC circuit containing a resistance, capacitance and inductance in series.

16

|𝑍𝑇 𝑜𝑡𝑎𝑙| = √𝑅2 + (𝜔𝐿 − 1
𝜔𝐶)

2

𝜙 = tan−1 (𝜔𝐿 − 1/𝜔𝐶
𝑅)

You could check what the current drawn by this total impedance would be, by remem-
bering Ohm’s law (𝑉 = 𝐼𝑍), and rearranging:

𝑖𝑖 = 𝑉𝑠
𝑍𝑇 𝑜𝑡𝑎𝑙

𝑖𝑖 = 𝑉𝑖
𝑅 + 𝑗 (𝜔𝐿 − 1

𝜔𝐶)𝑒𝑗𝜔𝑡

Analog-to-Digital Conversion (10%)

Suppose I set out to collect measurements about the voltage supplied by the electrical utility
company to my house house for a week. I happen to know that the frequency of this voltage
(in the US) is somehwere around 60Hz, but given that there is no guarantee it will maintain
this frequency, and also considering the fact that the signal is not band-limited, I decide to
over-sample.

Task a: Suppose I decide to sample it at 12 kHz with a 12-bit ADC. If I collect measurements
for an entire week, how much memory will I need to store all of these samples?

Answer

A 12-bit value can be stored in 2 bytes (16 bits). If we are storing each value separately,
then this would require 2 bytes

sample × 12000 samples
second × 8600 seconds

day × 7 days
week .

bytes_per_sample = 2
fs = 12000
seconds_in_day = 86400
days_in_week = 7
memory_footprint = bytes_per_sample * fs * seconds_in_day * days_in_week
print(f'The memory footprint is {memory_footprint} bytes/week.')

The memory footprint is 14515200000 bytes/week.

Another option is to combine the binary values (which are 12-bit), two at a time, into 3
bytes (i.e., 24 bits = 3 bytes). In that case, we could reduce the memory footprint by 1/4

17

at the expense of a slightly more complicated operation to read the values from memory.

Task b: Suppose now that I figure out a way to effectively make the signal band-limited, and
I can guarantee that all the signal content will be below 70Hz. What would be a more efficient
sampling rate in this case? How much memory would I require in this case?

Answer

In this case, we know that if we only care about being able to resolve the amplitude of
the frequency components present in the signal then Nyquist-Shannon tells us that the
sampling frequency should be larger than 140Hz. Assuming a value of 𝑓𝑠 = 150 Hz, then
we get:

bytes_per_sample = 2
fs = 150
seconds_in_day = 86400
days_in_week = 7
memory_footprint = bytes_per_sample * fs * seconds_in_day * days_in_week
print(f'The memory footprint is {memory_footprint} bytes/week.')

The memory footprint is 181440000 bytes/week.

Aliasing (10%)

In class, we learned why aliasing occurs and how it is related to the sampling frequency (or
the Nyquist frequency) of the data acquisition configuration. Answer the following questions
related to aliasing:

Task a: A 10Hz pure sine wave is sampled at 12 Hz. Compute the maximum frequency that
can be represented in the resulting discrete signal. Compute the aliased frequency.

Answer

According to the Nyquist-Shannon sampling theorem, we know that 𝑓𝑠
2 = 𝑓𝑁 , where 𝑓𝑁 is

the Nyquist frequency (the maximum frequency that can be represented in the resulting
discrete signal). In this case 𝑓𝑁 = 12

2 = 6Hz. Since 10𝐻𝑧 > 6𝐻𝑧 there will be aliasing.
In particular, the 10Hz signal will fold onto a 2Hz component.

Task b: Assume that the measured signal is complex periodic of the form 𝑦(𝑡) =
𝐴1𝑠𝑖𝑛(2𝜋25𝑡) + 𝐴2𝑠𝑖𝑛(2𝜋75𝑡) + 𝐴3𝑠𝑖𝑛(2𝜋125𝑡). If this signal is sampled at 100Hz, determine
the frequency content of the resulting discrete response signal.

18

Answer

When sampling this signal at 100Hz, any component that is above 50Hz will be aliased.
Let’s see how each of the components behaves after sampling:

• 𝐴1𝑠𝑖𝑛(2𝜋25𝑡) stays the same, as its frequency (25Hz) is under the Nyquist fre-
quency.

• 𝐴2𝑠𝑖𝑛(2𝜋75𝑡) is aliased as a 25Hz component with amplitude −𝐴2.
• 𝐴3𝑠𝑖𝑛(2𝜋125𝑡) is aliased as another 25Hz component with amplitude 𝐴3.

So the resulting signal has only one 25Hz component but with a combined amplitude of
(𝐴1 − 𝐴2 + 𝐴3).

Filters (10%)

A moving average is an filtering technique that can be applied to an analog or digital signal. A
moving average is based on the concept of windowing as illustrated in Figure 5. The portion
of the signal that lies inside the window in averaged and the average values are plotted as a
function of time as the window moves across the signal. A 10-point moving average of the
signal is plotted as well in Figure 6.

Task a: Discuss the effects of employing a moving average on the signal depicted in Figure 5.
In particular, discuss the changes imparted to the dynamic characteristics of the signal. What
does this say about the the transfer function for the moving average filter?

Answer

The moving average makes the resulting signal smoother (i.e., it removes the faster varia-
tions present in the original signal) while maintaining the general trend. It appears that
the transfer function is some kind of low-pass filter.

Task b: Develop a simple Python program that computes the moving average for the following
signal: 𝑦(𝑡) = 𝑠𝑖𝑛(5𝑡)+𝑐𝑜𝑠(11𝑡), discretized by applying a 0.05second sampling train. Examine
the effects of chaning the averaging window size from 4 to 30 samples.

19

Figure 5: Moving averaging and windowing

Figure 6: Effect of moving average on the signal.

20

Answer

import numpy as np
from matplotlib import pyplot as plt

window = 4 # samples
resolution = 0.05 # seconds

t = np.linspace(0,200,int(200/resolution))

y = np.sin(5*t) + np.cos(11*t)

def movwin(y,window=4):
There are way more efficient ways of doing this, but that's not the point of the exercise
y_win = np.zeros(len(y))
for i in range(len(y[:-window])):

y_win[i] = np.sum(y[i:i+window])/window
return y_win

plt.figure(1)
plt.subplots(figsize=(16,8))
zoom_range = (int(95/resolution),int(100/resolution))

for count, window in enumerate(range(4,30,5)):
y_windowed = movwin(y,window)

plt.subplot(3,2,count+1)
plt.plot(t[zoom_range[0]:zoom_range[1]],y[zoom_range[0]:zoom_range[1]],'-r')
plt.plot(t[zoom_range[0]+window:zoom_range[1]], y_windowed[zoom_range[0]:zoom_range[1]-window])

plt.legend(['Original signal', f'{window}-samples window'])
plt.xlabel('Time (t)')
plt.ylabel('y[t]')
plt.savefig(f'_ex-filters-1_solution.png')

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

21

Task c: What did you learn about the effects of the width (number of samples) for the
averaging window?

Answer

As the width of the window increased, the filtered signal became closer to a static signal
hovering around the average of the original one. From this point of view, and loosely
speaking, we can see the moving average as a low-pass filter. More technically, though,
it is a special kind of finite impulse response filter, and if you want to learn more about
the difference between low-pass filters and moving averages, you could start with this
relatively approachable answer on StackExchange.

22

https://dsp.stackexchange.com/questions/49174/a-basic-question-about-the-use-of-moving-average-vs-low-pass-filters-in-dsp

	What are sensors? (5%)
	Working with sensors and your RPi Pico W (10%)
	Harmonic Oscillators (10%)
	Circuit Analysis (25%)
	Task a (10%)
	Task b (5%)
	Task c (10%)

	Impedance (20%)
	Analog-to-Digital Conversion (10%)
	Aliasing (10%)
	Filters (10%)

